If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2-5z-5=0
a = 2; b = -5; c = -5;
Δ = b2-4ac
Δ = -52-4·2·(-5)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{65}}{2*2}=\frac{5-\sqrt{65}}{4} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{65}}{2*2}=\frac{5+\sqrt{65}}{4} $
| 5(r+9)−2(1−r)=1. | | -(3x-6)-(2-3x)=16 | | -2(x)+.5(x)=1(x) | | 5+9x-3-5x=10 | | 8=-10+p | | -80z-0.7=-90z+1.6 | | Y=5x+6x^2 | | -=m | | 3(2x+6)/2-10=20 | | 7a-6=37 | | (-2x)/(2x+12)=(2x)/(4x+24)+(6x-4)/(x+6) | | 1.6+x=6.8 | | 81x2=64 | | -19=8j-45 | | 12(13−14)−15=16+x+4 | | 39=35/100(x) | | 2x+8+2x=-7-x | | 1+3z=22 | | -5y-2=-4-3 | | -5-30x=-5-8x | | -8(n+3)-6=-38 | | x+(-8)=10 | | x^2-14x=10 | | 6h-321=693 | | -9-4x=31 | | 4x/4=-24/4 | | -29+6r=7(-1+4r) | | x-10/9=5/3 | | 13+c/9=-15 | | -7w-1=2w-1 | | 2x=1200-x-3x | | Y=10x-4× |